ORIGINAL ARTICLE

The Role of Monocyte to High-density Lipoprotein Cholesterol Ratio in Predicting the Severity of Acute Ischemic Stroke and its Association with the NIHSS

Deepti Sharma1, Sreedev Aravind2*, Sony Joseph3, Narendra Fagera4, Gopikrishnan Rajagopalan5

Received: 23 February 2022; Revised: 30 November 2022; Accepted: 08 December 2022

ABSTRACT

Background: Atherosclerosis, an underlying abnormality, plays a significant role in the progression of ischemic stroke. Inflammation, oxidative stress, platelet activation, endothelial dysfunction, and lipid abnormalities are the primary factors involved in the development of atherosclerosis. Monocytes, key contributors to chronic inflammation, actively participate in the development, progression, and rupture of atherosclerotic plaques within blood vessels. Therefore, the objective of this study is to investigate the monocyte to high-density lipoprotein cholesterol (HDL-C) ratio (MHR) in acute ischemic stroke (AIS) and its correlation with the National Institute of Health Stroke Scale (NIHSS) to predict the severity of the condition.

Materials and methods: A prospective observational study was conducted on 100 AIS patients and age/gender-matched controls at a hospital in Kota. Diagnostic methods included clinical examination, imaging, and laboratory tests. MHR was measured using a hematology analyzer and correlated with reference values and stroke severity.

Results: The mean MHR of AIS patients were higher (14.12 ± 2.95) than controls (7.09 ± 1.48) (p = 0.0001). Besides, a statistically significant positive correlation was obtained between his MHR and NIHSS scores at admission and discharge. MHR values were significantly greater from a reference point in patients who deteriorated (18.48 ± 4.02) compared to significantly lower values in patients who improved (13.66 ± 2.44).

Conclusion: In our study, the MHR shows an increased value in patients with AIS, and a linear correlation is found with the NIHSS score. Thus, the method is a pocket-friendly, easily available, and simple-to-use novel inflammatory marker that may predict the severity of a disease.

INTRODUCTION

In recent decades, stroke has caused a significant load on the healthcare system. Ischemic stroke is the leading cause of mortality and disability among low-income people. Therefore, it is highly desirable to detect ischemic stroke at the onset so that primary defence is the keystone of management.

Atherosclerosis, particularly intracranial atherosclerosis, plays a crucial role in the progression of ischemic stroke. Pathophysiological studies have identified intracranial plaques that can lead to interarterial embolism, hemodynamic depression, in situ thromboembolism, and focal branch occlusion, thereby contributing to the development of ischemia.1,2 Clinical studies have also shown a high incidence of intracranial atherosclerosis in patients with ischemic stroke across different races, as revealed by advanced imaging techniques or autopsy.3–6 However, these imaging techniques are expensive, time-consuming, require specialized settings, and are primarily used as supplementary data in clinical and research studies. Therefore, there is a need for a new marker for early diagnosis and prevention of ischemic stroke.

Inflammation, oxidative stress, platelet activation, endothelial dysfunction, and lipid abnormalities have been proposed as key components in the pathophysiology of atherosclerosis growth and progression.7,8 Monocytes, the primary players in chronic inflammation, interact mainly with platelets and endothelial cells, contributing to the aggravation of prothrombotic and inflammatory pathways. Their active involvement in the growth, progression, and rupture of atherosclerotic plaques at the vascular level is well established.9,10 Monocytes and T lymphocytes play an essential role in stroke pathogenesis by increasing the production of inflammatory cytokines, promoting infiltration and lipid core formation, and exacerbating brain damage. On the other hand, high-density lipoprotein cholesterol (HDL-C) protects endothelial cells from inflammation to oxidative stress by regulating monocyte activation and the proliferation of monocyte progenitor cells. It also suppresses macrophage migration and low-density lipoprotein (LDL) molecule oxidation.11,12 Based on the pathogenesis of atherosclerosis, HDL-C levels have antioxidant and anti-inflammatory properties as lipid parameters. They can mitigate the adverse effects of LDL-C on endothelial cells, limiting atherosclerosis. Conversely, monocytes are a hematological marker that increases during inflammation. Thus, based on literature findings, while HDL-C levels decline, monocyte levels increase in atherosclerosis, which in turn is expected to elevate the monocyte to HDL-C ratio (MHR) value.

Building upon these observations, the MHR has emerged as a preferred model for assessing the prognosis of cardiovascular events and evaluating atherosclerosis.13 The National Institutes of Health Stroke Scale (NIHSS) is a well-standardized and widely used tool for assessing stroke severity, predicting patient outcomes and prognosis, and monitoring treatment efficacy. However, the use of MHR in acute ischemic stroke (AIS) and its correlation with NIHSS is relatively unexplored.

Therefore, the aim of this study was to evaluate the MHR in AIS patients and its correlation with the NIHSS for predicting stroke severity. By comparing the MHR value with the NIHSS score, we can determine whether there is a correlation between the two. This study sought to assess the ratio of MHR in AIS and its correlation with NIHSS to predict the severity of AIS.

MATERIALS AND METHODS

This hospital-based, prospective, observational study was conducted at...
Inclusion Criteria
The patients included in this study were individuals diagnosed with AIS.

Exclusion Criteria
Patients with hemorrhagic stroke, venous sinus thrombosis, autoimmune disease, hepatic or renal disease, connective tissue disorders, moribund condition, seizure disorders, mental or physical illness, and refusal to participate in the study were excluded.

The clinical examination, the temporal profile of the clinical syndrome, and computed tomography or magnetic resonance imaging of the brain were applied to diagnose acute stroke. For detecting the risk factors (nonmodifiable and modifiable) of ischemic stroke, a detailed history, clinical investigations, and routine laboratory examinations were performed. The stroke severity was determined using the National Institute of Health Stroke Scale (NIHSS) among all patients at admission and release. Stroke severity was categorized as minor strokes (1–4), moderate strokes (5–15), moderate to severe strokes (16–20), and severe strokes (21–42).

An in-house, fully automated hematology analyzer performed the fasting lipid profile and complete blood count (CBC) test to measure the MHR. A peripheral venous sample (2 mL) was collected just after admission before any treatment with all aseptic precautions. A second sample was taken just before discharge, and the samples were processed immediately. Therefore, we performed a CBC test in which the ratio of monocytes to HDL was obtained by dividing the absolute number of monocytes by HDL. This MHR ratio was further correlated to calculated reference values from a control group (same age and sex) and NIHSS severity scores (at admission and discharge).

Statistical Analysis
Continuous variables were presented as mean ± standard deviation (SD), while categorical variables were expressed as frequencies and percentages. Independent t-tests compared parameters between cases and controls. Chi-squared tests analyzed the correlation between categorical variables. Unpaired Student’s t-tests and Chi-squared tests examined the relationship between MHR ratio and stroke severity. A significance level of p < 0.05 indicated statistical significance. Pearson correlation coefficient assessed MHR-NIHSS correlation at admission and discharge.

RESULTS
Of 100 patients, 55 males and 45 females were matched with a control group containing 57 males and 43 females. Most patients with AIS were between 50 and 69 years (73%), and their age had a mean of 62.26 ± 9.12 years.

The average HDL ratio of male cases was 39.3 mg/dL, and that of female cases was 47.2 mg/dL. The mean duration of onset of symptoms is 38 hours (1.5 days), with a range of presentation from 8 to 140 hours (5.8 days). We have not taken the patients presented in the window period. The mean discharge period was 6.3 days, showing a negative correlation with MHR.

Right hemiparesis with or without cranial nerve involvement was the very common focal neurological deficit, accounting for 49% of the cases when compared to 45% of the cases with left hemiparesis with or without cranial nerve involvement. Approximately 6% of cases showed features of posterior circulation stroke, such as dizziness and incoordination.

The stroke severity in patients of different groups based on NIHSS score showed the maximum was in NIHSS score group 5–15 (moderate stroke). A total of 71 patients had NIHSS scores between 5 and 15, and 61 patients had NIHSS scores between 5 and 15 at discharge.

The most common risk factor was hypertension, with a prevalence of approximately 50% in our study group. This was followed by smoking (40%), diabetes (36%), and alcoholism (35%) (Table 1).

The absolute numbers of monocytes in the study and control groups were 590.84 ± 84.6 and 394.61 ± 65.8 (Table 2).

Table 1: Risk factors between groups

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>Control group (%)</th>
<th>Study group (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>44</td>
<td>50</td>
</tr>
<tr>
<td>Smoking</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Diabetes</td>
<td>25</td>
<td>36</td>
</tr>
<tr>
<td>Alcoholism</td>
<td>26</td>
<td>35</td>
</tr>
</tbody>
</table>

Table 2: Comparison of absolute monocyte count between groups

<table>
<thead>
<tr>
<th>Monocyte</th>
<th>Control</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>394.61</td>
<td>590.84</td>
</tr>
<tr>
<td>SD</td>
<td>65.8</td>
<td>84.6</td>
</tr>
<tr>
<td>t</td>
<td>18.307</td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Comparison of HDL levels between groups

<table>
<thead>
<tr>
<th>HDL</th>
<th>Control</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>56.37</td>
<td>42.57</td>
</tr>
<tr>
<td>SD</td>
<td>6.29</td>
<td>5.01</td>
</tr>
<tr>
<td>t</td>
<td>17.14</td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Comparison of MHR between acute ischemic stroke between groups

<table>
<thead>
<tr>
<th>MHR</th>
<th>Control</th>
<th>Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>7.09</td>
<td>14.12</td>
</tr>
<tr>
<td>SD</td>
<td>1.48</td>
<td>2.95</td>
</tr>
<tr>
<td>t</td>
<td>21.247</td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.0001</td>
<td></td>
</tr>
</tbody>
</table>
scores 16–20 was 16.60 ± 2.47, and the ratio was highest in NIHSS groups 21–42, 22.04 ± 1.14 (Table 5 and Fig. 4).

At admission, a statistically significant correlation was found between MHR and NIHSS scores (Table 6 and Fig. 5).

Table 5: Monocyte to HDL-C ratio (MHR) comparison according to NIHSS score at admission

<table>
<thead>
<tr>
<th>NIHSS score</th>
<th>No. of patients</th>
<th>MHR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–4</td>
<td>11</td>
<td>11.02 ± 1.15</td>
</tr>
<tr>
<td>5–15</td>
<td>71</td>
<td>13.66 ± 2.10</td>
</tr>
<tr>
<td>16–20</td>
<td>14</td>
<td>16.60 ± 2.47</td>
</tr>
<tr>
<td>21–42</td>
<td>4</td>
<td>22.04 ± 1.14</td>
</tr>
</tbody>
</table>

Table 6: Comparison between MHR of AIS patients and NIHSS at admission

<table>
<thead>
<tr>
<th>Total no. of patients</th>
<th>Admission (mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monocyte (per mm³)</td>
</tr>
<tr>
<td>Improved</td>
<td>77</td>
</tr>
<tr>
<td>Deteriorated</td>
<td>8</td>
</tr>
<tr>
<td>Static</td>
<td>15</td>
</tr>
</tbody>
</table>

Among 100 patients, 77 improved, eight worsened, and 15 were static, according to the clinical status of the various NIHSS score groups assessed at discharge. Most patients who improved were shown to have much lower mean heart rates than those who deteriorated (Table 7).

Discussion

Our study involved AIS patients (100) and the same number of age- and sex-matched controls. In our study, the largest cases (73%) were in the 50–69-year-old group. This was similar to the study by Ojha et al.14 Most patients were over 45 years of age in Grau et al.15 study. In this study, the mean age of cases was 61.04 ± 8.65 years. In a study by Yilmaz et al.16 The median age group was 68.36 ± 16.2 years old. The male-to-female ratio in our study was 1.3, such that the population is 57% male and 43% female.

Our study results were similar to those of Grau et al.,15 and Altafi et al.17 also found similar proportions of males and females with stroke. Therefore, the prevalence of stroke is slightly higher in men than women.

In our study, hypertension was the most common risk factor for ischemic stroke, with a prevalence of 50% of patients.

Fig. 2: Correlation between monocyte count of patients suffering from acute ischemic stroke with NIHSS at admission

Fig. 3: Correlation between HDL levels of patients suffering from acute ischemic stroke with NIHSS at admission

Fig. 4: National Institute of Health Stroke Scale (NIHSS) score MHR

Table 7: Mean monocyte count, HDL level, and MHR at admission and its relation to the outcome of the patient
The Role of Monocyte to High-density Lipoprotein Cholesterol Ratio

Mauricio et al., in their research, found that the group had hypertension in 64% of stroke cases. Dalal et al., Nagaraj et al., and Alvarez et al. in their studies had prevalence of hypertension at 40, 22.6 and 23.3%, respectively. Hypertension can adversely affect cerebrovascular autoregulation. Diabetes is a known risk factor for macrovascular complications.

Our study found diabetes mellitus in 36% of stroke patients, similar to Soliman et al. and Tallawy et al. 34.7 and 36.5% of patients had diabetes, respectively. The increased risk of stroke in diabetes is due to elevated clotting factors and hyperinsulinemia, which play an important role in developing microangiopathic stroke.

In our study, 40% of cases had a smoking history, consistent with the study of Kaul et al. Comparably, Aksoy et al. showed a 40% smoking prevalence. The possible mechanisms include carboxy hemoglobinemia, increased platelet aggregation, increased fibrinogen levels, decreased HDL cholesterol, and reduced levels of compounds such as 1,3-butadiene, a gas phase component of environmental tobacco smoke. Includes direct toxic effects. Accelerate arteriosclerosis. In our study, 23% of stroke patients had a history of ischemic heart disease (IHD). This is consistent with research by Fogelhalm and Murros et al. found that 18% of patients had previously suffered from IHD. People with a history of IHD are more likely to have a stroke because they are at greater risk of embolism.

High-density Lipoprotein (HDL) Levels and Acute Ischemic Stroke

In our study, HDL levels in cases and controls were 42.57 mg/dL and 56.37 mg/dL, respectively. In another study by Ralph et al. in stroke, HDL levels in cases were 40 mg/dL compared to 47 mg/dL in control group. This lower level of HDL compared to controls may be due to its protective effects against atherosclerosis, including reverse cholesterol transport, antioxidant, anti-inflammatory, antithrombotic effects, and modification of endothelial function.

Monocyte to HDL-C Ratio (MHR) and Acute Ischemic Stroke

In our study, the mean MHR, calculated by dividing the absolute number of monocytes by the HDL-C ratio, was significantly higher than the mean MHR value in patients with AIDS, 14.12 ± 2.95, was 7.09 ± 1.48 obtained in control subjects. Another study by Bolayir et al. compared MHR values in AIDS cases and controls, which showed values of 13.58 ± 4.67 and 9.46 ± 1.13, respectively. Another study by Liu et al. found MHR values of 12.37 in cases and 11.21 in controls. This increase in MHR is because inflammation and dyslipidemia have been proposed as key factors in atherosclerosis development and progression pathophysiology.

Furthermore, monocytes, known as indicators of chronic inflammation, primarily interact with platelets and endothelial cells, exacerbating inflammatory and prothrombotic processes. They actively contribute to the formation, progression, and rupture of atherosclerotic plaques. Conversely, HDL-C protects endothelial cells from inflammation to oxidative stress by regulating monocyte activation and proliferation. It also inhibits macrophage migration and LDL molecule oxidation. Considering the pathogenesis of atherosclerosis, HDL-C levels possess antioxidant and anti-inflammator properties, which help mitigate the detrimental effects of LDL-C on endothelial cells and limit atherosclerosis. Simultaneously, monocytes serve as hematological markers that increase during inflammatory conditions.

Monocyte to HDL-C Ratio (MHR) and Clinical Outcome

In our study, among 100 patients, 77 showed improvement, eight worsened, and 15 remained static. At admission, the MHR in 77 patients who improved was 13.66 ± 2.44. Eight deteriorated patients had an MHR value of 18.48 ± 4.02. This suggested that the MHR value at admission was low for those who improved and high for those who deteriorated. As a result of this data, it is possible to conclude that admission MHR values predict severity and prognosis in stroke patients.

Li et al. reported the MHR ratio in predicting the prognosis of aortic atherosclerosis and ischemic stroke; increased MHR was associated with aortic atherosclerosis and ischemic stroke at three months. It was associated with an increased risk of poor outcomes in functional outcomes of stroke. In another study by Liu et al., multivariate logistic regression analyses showed that higher MHR scores in stroke patients were independently associated with poorer outcomes at 3 months.

Limitations of our study include small sample size, single-center patient inclusion, lack of long-term follow-up to assess MHR as a predictor of prognostic outcomes in AIS, and absence of blinding among researchers.

CONCLUSION

The MHR is a simple, inexpensive, and readily available method that may help predict disease severity and functional outcomes in AIS patients. There is a proven linear correlation between this ratio and NIHSS scores. Moreover, this ratio can be calculated even in limited-resource health setups. However, further investigations are necessary to validate our results. Our study strongly supports the routine calculation of this ratio and its potential contribution to risk stratification in AIS patients.

ACKNOWLEDGMENT

I am extremely thankful to the principal and superintendent of Government Medical College, Kota.

REFERENCES